QUESTION BANK 2016

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Year & Sem: II-B.Tech & I-Sem

Regulation: R15

<u>UNIT –V</u>

1.a) Tabulate y (0.1), y (0.2), and y (0.3) using Taylor's series method given that	[5 M]
$y^1 = y^2 + x$ and $y(0) = 1$	

- b) Solve $y^1 = x + y$, given y (1)=0 find y(1.1) and y(1.2) by **Taylor's series method** [5 M]
- 2. Find y(0.1),y(0.2),z(0.1),z(0.2) given $\frac{dy}{dx} = x+z$, $\frac{dz}{dx} = x-y^2$ and y(0)=2, [10 M]
 - Z (0)=1 by using Taylor's series method .
- 3.a) Find the value of y for x=0.4 by **picards method** given that $\frac{dy}{dx} = x^2 + y^2$, y(0)=0 [5 M]

b) Obtain y(0.1) given
$$y^1 = \frac{y-x}{y+x}$$
, y(0)=1 by **picards method**. [5 M]

4.a) Given that
$$\frac{dy}{dx} = 1 + xy$$
 and y (0) =1 compute y(0.1), y(0.2) using **picards method** [5 M]

b) Solve $y^1 = y \cdot x^2$, y(0) = 1 by **picards method** upto the fourth approximation. [5 M]

Hence find the value of y(0.1), y(0.2).

- 5. a) Using modified Euler's method find y(0.2), y(0.4) given $y^1 = y + e^x$, y(0)=0 [5 M]
 - b) Find the solution of $\frac{dy}{dx} = x-y$, y(0)=1 at x=0.1, 0.2, 0.3, 0.4, 0.5 using [5 M]

Modified Euler's Method.

6. Given that $y^1 = x + \sin y$, y(0) = 1 compute y(0.2), y(0.4) with h=0.2 using Euler's Modified method [10 M]

QUESTION BANK	2016
7.a) Use Runge- kutta method to evaluate $y(0.1)$ and $y(0.2)$ given that $y^1 = x+y$, $y(0) = 1$	[5 M]
b) Find y(0.1) and y(0.2) using R-K 4th order formula given that $y^1=x^2-y$ and y(0)=1	[5 M]
8. Using R-K method of 4 th order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, y(0)=1 Find y(0.2) and y(0.4)	[10 M]
9. a) Use Milne's predictor – corrector method to obtain the solution of the equation	[5 M]
$y^1 = x - y^2$ at x=0.8 given that y(0)=0, y(0.2)=0.02, y(0.4) = 0.0795, y(0.6)=0.1762	
b) Use Milne's method to find $y(0.8)$, $y(1.0)$ from $y^1=1+y^2$, $y(0)=0$	[5 M]
Find the initial values $y(0.2)$, $y(0.4)$, $y(0.6)$ from the R-K method	
10. a) Define ODE .	[5x2=10M]
b) Write the SFPF formula for Laplace Transforms .	

- c) Write the formula for R-K method .
- d) Write the Milne's predictor corrector formula.

e) Solve $y^1 = y \cdot x^2$, y (0) =1 by **picards method** upto the Second approximation.

L210.3M	OUESTI	ON BANK (OBJECT	<u>'IVE)</u>		
Subject with Co	de : MATHEMATICS	S-III(15A54301)	Course & Bra	nch:]	B.Tech(ECE)
Year & Sem: II-	B.Tech & I-Sem		Regulation:	R15	
1.Successive appro	oximations are used i	<u>UNIT – V</u> in			
a)Milne's method	b)Picard's method	c)Taylor series method	d)none	[]
2Which of the follo	owing in a step by step	method:			
a)Taylor's series	b)Adam's bashfort	h c)Picard's	d)none	[]
3.Runge-kutta meth	od is self starting me	thod:			
a)true	b)false	c)we can't say	d)none	[]
4.Predictor-correcto	r methods are self star	ting methods:			
a)true	b)false	c)we can't say	d)none	[]
5.The second order	Runga-kutta formula i	S			
a)Euler's method	b)N	ewton's method			
c) modified euler'	s method d)n	one		[]
6. The following is a	called predictor-correc	ctor method:			
a)Picard's method	b)Euler's	method			
c)Milne's method	d)none			[]
7.Which of the follo	wing is best for solvir	ng initial value problem	s.		
a)Euler's method	b)Mo	dified Euler's method			
c)Taylor's series	method d)Rur	ge-kutta method of ord	er 4	[]
8.In Adam's method	l atleast values of y,pr	ior to the desired value,	, are		
Required					
a)Five	b)two	c)six	d)four	: []

			QUESTION BAN	NK 2016
9.If' 'n' conditions are specified	at the initial	point ,then it is ca	lled []
a)initial value problem	b)final value	e problem		
c)boundary value problem	d)none			
10. If 'n' conditions are specified	at two or more	points, then it is calle	ed	
a)initial value problem	b)final value	-		
c)boundary value problem	d)none	1	[]
11. To apply milne's method we r		prior values of v	L	1
11. To apply mille s memod we l			[]
a) 1 b) 2 12. The first order Runge-Kutta m	c) 3 method is =	d) 4	4	
a) Euler's method b)Modifies 13. The second order Runge-Kutt		•	[d) Picard's m] nethod
a) $y_0 + (k_1 + k_2)$ b) y	(1- 1-)	-) 1 (1 + 1-)	1) 1 (1-]
a) $y_0 + (\kappa_1 + \kappa_2)$ b) y 14. To apply Fourier series, the fu				+ K ₂)
			[]
a) Euler's b) D 15. The n th difference of a n th deg		c) Laplace	d) none]
a) Constant b) Z		c) one	d) none	1
16. Successive approximations us			[]
a) Euler's b) T 17.,The taylor's for $f(x) = log(1 + log)$	•	c) Picard's	d) R-K	
	ж			
a) $x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$ b) x	a	c) both a and b]
18. The taylor's for solutions of t	he equations $\frac{du}{dx}$	$f = f(x,y), y(x_0) = y_0$ is	s []
a) $y(x)=y_0+(x-x_0)y_0^1+\frac{(x-x_0)^2}{2}$	$\frac{x_{0}}{x_{0}}^{2} y_{0}^{11} \dots b)$	$y(x)=y_0+\frac{(x-x_0)^2}{2!}y_0^{11}$	·	
c) both a and b	d)none		
19. Disadvantage of picard's met	hod is			
a) It can be applied to those ec	quations only in v	which successive int	egrations can be	
performed easily				
b)can be applied to those equation	ons only in which	successive integrati	ions can be perfor	med
difficulty.	c) both a and b	d)non	ne []

Mathematics-III

				QUESTION E	BANK 2016
20. The predictor-corr	ector method	s are not	methods		
a)Picard's method	b)H	Euler's metho	d		
c)Milne's method	d)s	d)self- starting method		[]
21. The R-K method is	a	method			
a)Picard's method	b)H	Euler's metho	d		
c)Milne's method	d)s	self- starting r	nethod]]
22.The fourth order R-	K formula is				
a) $y_1 = y_0 + \frac{1}{6}$ (k ₁ +2k ₂)	$(2+2k_3+k_4)$		b) $y_1 = y_0 + \frac{1}{6}$	$(k_1 + 2k_3 + k_4)$	
c) $y_1 = y_0 + \frac{1}{6}$ (k ₁ +2k	₂ +2k ₃)		d)none	[]
23. Using Euler's meth	nod y ¹ = $\frac{y-x}{y+x}$,y(0)=1 and h	=0.02give y ₁ =.		
a)0.02 b) 1.02	c) 2.0	02	d)3.02]]
24.Using Euler's meth	nod y ¹ = $\frac{y-x}{y+x}$,y(0)=1 then t	he picard's me	thod the value of	
$y^1(x) =$]]
a) 1 +2log(1+x)	b) 1-x+2le	og(1+x)	c) x+2log(1+	x) d)none	
25. If $\frac{dy}{dx} = x - y$ and $y(0)$	(0)=1 then by	picard's meth	od the value of	y ¹ (1) is []
a) 0.905	b) 1.905	c)	2.905	l)none	
26. If $\frac{dy}{dx} = x^2 + y^2$, y(0)	= 0 then by p	icard's metho	d the value of	y ¹ (x) is []
a) $1 + 2\log(1+x)$				d)x ³ /3	
27. If $\frac{dy}{dx} = x + y$, y(0)=				,	$v^2(\mathbf{x})$
		.,	51		
is a) $1 + x + x^2 + x^3/6$	b) 1	² + ³ /6	a) $w + 21a = (1 + 1)^{1}$)]]
			_		1
28. If $y_0=1$ h=0.2 , f(x_0				f y ₁ = []
	b) 1.2 $- 2 - b = 0.2 + t$	c) 2.2	d)none	lue of y -	1
29. If $y^1 = y - x$ and $y(0) = x^2 + y^2 + y^$				iue or y ₁ = []
a) 0.4	b) 1.4	c) 2.4	d)none		

			QUESTION BANK 2016		
30.If $\frac{dy}{dx} = -x, y(0)=1, h=0.01$ then by Euler's method the value of $y_1=$ []					
a) 1.99	b) 2.99	c) 0.99	d)none		
31.If y ₁ =1.02,h=	$=0.02$, $f(x_1, y_1)=0.96$	15 then the value of	of y ₂ by Euler's method is []		
a) 1.0577	b) 1.0477	c) 1.0377	d)none		
32. if y ₁ =1.1,h=0	$(1, f(x_1, y_1) = 1.2 \text{ ther})$	n by euler's method	d the value of y_2 is []		
a)0.22	b) 1.22	c)2.22	d)3.222		
33.if y ₁ =1.2,h=0	.2, $f(x_1, y_1) = 1.4$, the	n by euler's metho	d the value of y_2 is []		
a)3.48	b)2.48	c)1.48	d)0.48		
34. If $\frac{dy}{dx} = \frac{y-2x}{y}$, y	(0)=1 and $h=0.1$ the	the value of y_1 by	y eulers method is []		
a)1.1813	b)0.1813	c)2.1813	d)3.1813		
$35.\text{If } \frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}, y$	v(0)=1, h=0.2 then t	he value of k_1 in for	ourth order R-K method is []		
a)0.01	b)0.002	c)0.2	d)0.000002		
36. If $\frac{dy}{dx} = x + y^2$,	y(0)=1, h=0.1 the v	alue of K_2 in the fo	ourth order R-K method is []		
a)0.1152	b)0.5211	c)1.5211	d)1.1152		
$37.\mathrm{If} \frac{dy}{dx} = x^2 + y^2, f(x)$	$x_0, y_0) = 1, h = 0.1, k_1 =$	0.1,k ₂ =0.1105 ,k ₃ =	=0.1105 and k_4 =0.1222 then the value of y(1.	1)	
by fourth orde	er R-K method is		[]		
a)0.5566	b)0.4488	c)0.1107	d)0.2234		
$38.\text{If} \frac{dy}{dx} = x + y, f(x_0, y_0) = 1, h = 0.2, k_1 = 0.1, k_2 = 0.11, k_3 = 0.1105 \text{ and } k_4 = 0.12105 \text{ then the value of}$					
y(0.2) =			[]		
a)1.5566	b)1.4488	c)1.1107	d1.2428		
39.Given y ₀ ,y ₁ ,y ₂ ,y	v ₃ milne's correcto	r formula y ₄ =	[]]		
a) $y_2 + \frac{\hbar}{3}(f_2 + 4f_3 + f_4)$ b) $y_2 - \frac{\hbar}{3}(f_2 + 4f_3 + f_4)$ c) $y_2 + \frac{\hbar}{3}(f_2 - 4f_3 + f_4)$ d)none					
40.Milne's predicto	or formula y ₄₌		[]		
a) $y_2 + \frac{h}{3}(f_2 + 4f_3 + f_4)$ b) $y_2 - \frac{h}{3}(f_2 + 4f_3 + f_4)$ c) $y_0 + \frac{4h}{3}(2f_1 - f_2 + 2f_3)$ d)none					

Mathematics-III